Arsip | Jaringan RSS for this section

Perangkat Untuk Membangun RT RW Net 


Banyaknya pertanyaan yang di kirim ke email pengelola mengenai peralatan apa saja yang dibutuhkan untuk membangun sebuah RT RW Net.
Untuk membangun RT RW Net secara sederhana yang harus anda siapkan pertama adalah koneksi internet Unlimited yang akan dijadikan sebagai backbone pemancar Wireless LAN atau RT RW Net anda.

Dan peralatan pendukungnya antara lain :
1. Access Point

Fungsi Access Point adalah sebagai Hub/Switch yang bertindak untuk menghubungkan jaringan lokal dengan jaringan wireless/nirkabel para client/tetangga anda, di access point inilah koneksi internet dari tempat anda dipancarkan atau dikirim melalui gelombang radio, ukuran kekuatan sinyal juga mempengaruhi area coverage yang akan dijangkau, semakin tinggi kekuatan sinyal (ukurannya dalam satuan dBm atau mW) semakin luas jangkauannya.

2. Antena ( Omni atau sectoral )

Untuk memperluas coverage area hingga beberapa Kilometer, anda memerlukan antena omni eksternal, meskipun ketika anda membeli access point sudah dilengkapi antena omni, namun belumlah cukup karena hanya berkekuatan sekitar 3-5dB, untuk memperluas area jangkauannya, anda memerlukan antena Omni eksternal, yang rata-rata berkekuatan 15dB.
Antena Omni ini memiliki pancaran atau radiasi 360 derajat, jadi cocok bisa menjangkau client dari arah mana saja.

3. Box Access Point

Untuk melindungi access point anda dari hujan, maka diperlukan pelindung berbentuk kotak, bisa terbuat dari plastik atau plat besi, rata-rata kotak ini sudah dilengkapi dengan kunci pengaman, dan box ini harus diletakkan persis di bawah antena.

4. Kabel Pigtail/ Kabel Jumper

Kabel Pigtail atau kabel jumperl diperlukan untuk menghubungkan antara antena omni dengan dengan access point, perhatikan panjang maksimal yang diperlukan hanya 1 meter, selebih dari itu anda akan mengalami degradasi sinyal (loss dB) Pada kedua ujung kabel terdapat konektor dimana type konektor disesuaikan dengan konektor yang melekat pada access point anda.

5. POE (Power Over Ethernet)

Agar kabel listrik tidak dinaikkan ke atas untuk “menghidupkan” access point maka anda memerlukan alat “POE” ini yang fungsinya mengalirkan listrik melalui kabel ethernet atau kabel UTP/STP, dengan alat ini maka anda tidak perlu repot-repot lagi mengulur kabel listrik ke atas tower, lebih praktis dan hemat.

6. Kabel UTP/STP

Meski namanya perangkat wireless, namun peranan kabel juga diperlukan, kabel UTP/STP ini diperlukan untuk menghubungkan antara access point dengan jaringan kabel pada LAN lokal anda, jadi di bawah dia bisa ditancapkan ke komputer Gateway/Router atau ke Hub/Switch, pilihlah kabel UTP/STP yang berkualitas baik guna meningkatkan kualitas arus listrik yang dilewatkan melalui POE.

7. Penangkal Petir (Lightning Arrester)

Sebagai pengaman dari petir maka anda memerlukan alat ini yang berfungsi menyalurkan kelebihan beban listrik saat petir menyambar ke kabel pembumian (grounding), komponen ini dipasang pada kabel jumper antara perangkat access point dengan antena eksternal. Grounding untuk penangkal petir umumnya ditanam dengan batang tembaga hingga kedalaman beberapa meter sampai mencapai sumber air. Ingat grounding yang kurang baik akan menyebabkan perangkat wireless tetap rentan terhadap serangan petir.

8. Tower

Guna mendapatkan jangkauan area coverage yang maksimal, anda perlu menaikkan antena omni eksternal ke tempat yang tinggi agar client WLAN anda bisa menangkap sinyal radio anda dengan baik.

Iklan

==Menganalisa Jaringan Menggunakan Ping dan Traceroute== 


Kadang-kadang alamat web yang sering kita kunjungi tidak dapat diakses secepat
biasanya, di internet hal ini dapat terjadi karena beberapa sebab, yang paling
sering adalah karena jalur internet yang kita lalui memang sedang melambatatau
penuh atau server dari alamat web tersebut sedang diakses oleh banyak orang
sehingga membutuhkan waktu bagi server tersebut untuk memproses permintaan kita.

Memang sulit untuk mendeteksi permasalahan yang ada pada server remote (server
yang terletak di tempat lain), tetapi ada beberapa software yang dapat membantu
kita untuk mendeteksi kondisi jaringan yang kita lalui.

Dua software yang paling sering penulis pakai untuk mendeteksi jaringan adalah
ping dan traceroute. Utility tersebut pada mulanya diciptakan untuk sistem
operasi Unix, tetapi sekarang juga diterapkan pada DOS dan Windows, bernama ping
dan tracert. Juga ada versi dari program ini yang berjalan pada Macintosh. Untuk
artikel ini, penulis mengasumsikan pembaca menggunakan Unix atau Linux, tetapi
cara yang sama dapat diterapkan pada DOS dan Windows.

Penulis akan memulai dengan ping. Ping bekerja dengan mengirimkan sebuah paket
data yang disebut dengan Internet Control Message Protocol (ICMP) Echo Request.
Paket ICMP ini biasanya digunakan untuk mengirimkan informasi tentang kondisi
jaringan antara dua host (komputer). Informasi yang dikirim kurang lebih adalah
“jangan lakukan itu”, “kirimkan paket yang lebih kecil”, “data yang anda cari
tidak ada”, “jangan kesini, anda harusnya kesana”. Jika sebuah host menerima
Echo Request ini, dia harus merespon dengan mengirimkan Echo Reply, dengan
menempatkan Echo Request ke bagian data pada Echo Reply.

Penggunaan ping cukup sederhana, kita tinggal mengetikkan : ping namahost,dimana
namahost adalah nama atau nomor IP dari host yang kita tuju. Banyak sekali versi
dari ping, tetapi jika anda menggunakan ping milik Linux, maka outputnya akan
menjadi seperti berikut :

$ ping http://www.silvia.com
PING silvia.com (198.168.0.2): 56 data bytes
64 bytes from 198.168.0.2: icmp_seq=0 ttl=253 time=0.398 ms
64 bytes from 198.168.0.2: icmp_seq=1 ttl=253 time=0.552 ms
64 bytes from 198.168.0.2: icmp_seq=2 ttl=253 time=0.554 ms
64 bytes from 198.168.0.2: icmp_seq=3 ttl=253 time=0.553 ms
64 bytes from 198.168.0.2: icmp_seq=4 ttl=253 time=0.554 ms
64 bytes from 198.168.0.2: icmp_seq=5 ttl=253 time=0.551 ms
64 bytes from 198.168.0.2: icmp_seq=6 ttl=253 time=0.552 ms
64 bytes from 198.168.0.2: icmp_seq=7 ttl=253 time=0.554 ms
64 bytes from 198.168.0.2: icmp_seq=8 ttl=253 time=0.554 ms
64 bytes from 198.168.0.2: icmp_seq=9 ttl=253 time=0.553 ms
^C
—-localhost PING Statistics—-
10 packets transmitted, 10 packets received, 0% packet loss
round-trip min/avg/max = 0.398/0.537/0.554 ms $

yang terjadi ketika kita melakukan ping ke http://www.silvia.com adalah kita mengirim satu
paket ICMP Echo Request, setiap detik ke host tersebut. Ketika program ping kita
memperoleh Echo Reply dari host yang kita tuju (www.silvia.com), dia akan mencetak
respon tersebut ke layar yang menunjukkan ke kita beberapa informasi : yang pertama
adalah nomor IP dari mana ping memperoleh Echo Reply, biasanya IP ini adalah IP dari
host yang kita tuju (www.silvia.com), yang kedua adalah nomor urut (ICMP Sequence),
yang dimulai dari 0 dan seterusnya, yang ketiga adalah Time To Live (TTL) dan yang
terakhir adalah berapa mili detik waktu yang diperlukan untuk program ping mendapatkan
balasan.Informasi-informasi tersebut akan penulis jelaskan satu persatu sebagai berikut.

Nomor urut yang didapat menandakan paket ping yang keberapa yang dibalas, jika nomor
yang didapat tidak berurutan, berarti ada paket yang drop, dengan kata lain entah itu
Echo Request atau Echo Reply hilang di tengah jalan. Jika jumlah paket yang hilang
sedikit (kurang dari satu persen), hal ini masih normal. Tapi jika paket yang hilang
banyak sekali, berarti ada masalah pada koneksi jaringan kita.

Informasi berikutnya adalah Time To Live, setiap paket data yang dikirimkan melalui
jaringan memiliki informasi yang disebut TTL, biasanya TTL ini diisi dengan angka
yang relatif tinggi, (paket ping memiliki TTL 255). Setiap kali paket tersebut melewati
sebuah router maka angka TTL ini akan dikurangi dengan satu, jika TTL suatu paket
akhirnya bernilai 0, paket tersebut akan di drop atau dibuang oleh router yang
menerimanya. Menurut aturan RFC untuk IP, TTL harus bernilai 60 (dan untuk ping 255).
Kegunaan utama dari TTL ini supaya paket-paket data yang dikirim tidak ‘hidup’
selamanya di dalam jaringan. Kegunaan yang lain, dengan informasi ini kita dapat
mengetahui kira-kira berapa router yang dilewati oleh paket tersebut, dalam hal ini 255
dikurangi dengan N, dimana N adalah TTL yang kita lihat pada Echo Reply.

Jika TTL yang kita dapatkan sewaktu kita melakukan ping berbeda-beda, ini menandakan
bahwa paket-paket ping yang kita kirim berjalan melewati router yang berbeda-beda,
hal ini menandakan koneksi yang tidak baik.

Informasi waktu yang diberikan oleh ping adalah waktu perjalanan pulang pergi ke remote
host yang diperlukan oleh satu paket. Satuan yang dipakai adalah mili detik, semakin
kecil angka yang dihasilkan, berarti semakin baik (baca : cepat) koneksinya. Waktu
yang dibutuhkan suatu paket untuk sampai ke host tujuan disebut dengan latency. Jika
waktu pulang pergi suatu paket hasil ping menunjukkan variasi yang besar (diatas 100),
yang biasa disebut jitter, itu berarti koneksi kita ke host tersebut jelek. Tetapi
jika selisih tersebut hanya terjadi pada sejumlah kecil paket, hal tersebut masih dapat
ditoleransi.

Untuk menghentikan proses ping, tekan Ctrl+C, setelah itu ping akan mencetak informasi
tentang berapa paket yang telah dikirimkan, berapa yang diterima, persentasi paket yang
hilang dan angka maksimum, minimum serta rata-rata dari waktu yang dibutuhkan oleh
paket tersebut untuk melakukan perjalanan pulang pergi.

Seperti yang anda lihat, ping berguna untuk melakukan tes konektivitas pada jaringan
dan untuk memperkirakan kecepatan koneksi.

Berikutnya kita akan mempelajari traceroute (atau tracert di dalam windows) yang akan
menunjukkan pada kita jalur router yang dilewati oleh paket yang kita kirimkan ke host
tertentu. Untuk lebih memperjelas, berikut ini adalah contoh hasil traceroute ke
http://www.berkeley.edu:

$ traceroute http://www.berkeley.edu
traceroute to amber.Berkeley.EDU (128.32.25.12), 30 hops max, 40 byte packets
1 203.130.216.2 (203.130.216.2) 137 ms 151 ms 151 ms
2 203.130.216.1 (203.130.216.1) 151 ms 137 ms 138 ms
3 192.168.8.49 (192.168.8.49) 137 ms 151 ms 151 ms
4 S12-0-11.kbl.surabaya.telkom.net.id (202.134.3.45) 192 ms 151 ms 151 ms
5 FE0-0-gw3.cibinong.telkom.net.id (202.134.3.134) 165 ms 151 ms 151 ms
6 hssi-gw3.hk.telkom.net.id (202.134.3.1) 659 ms 659 ms 645 ms
7 202.130.129.61 (202.130.129.61) 645 ms 687 ms 659 ms
8 321.ATM5-0-0.XR1.HKG2.ALTER.NET (210.80.3.1) 645 ms 659 ms 645 ms
9 POS1-0-0.TR1.HKG2.Alter.Net (210.80.48.21) 672 ms 646 ms 645 ms
10 384.ATM4-0.IR1.LAX12.Alter.Net (210.80.50.189) 838 ms 796 ms 796 ms
11 137.39.31.222 (137.39.31.222) 810 ms 852 ms 810 ms
12 122.at-5-1-0.TR1.LAX9.ALTER.NET (152.63.10.237) 824 ms 810 ms 810 ms
13 297.at-1-0-0.XR1.LAX9.ALTER.NET (152.63.112.237) 824 ms 838 ms 824 ms
14 191.ATM6-0.BR1.LAX9.ALTER.NET (152.63.113.9) 837 ms 797 ms 810 ms
15 acr1-loopback.Anaheim.cw.net (208.172.34.61) 810 ms 1071 ms 782 ms
16 acr1-loopback.SanFranciscosfd.cw.net (206.24.210.61) 783 ms 810 ms 769 ms
17 BERK-7507–BERK.POS.calren2.net (198.32.249.69) 810 ms 1126 ms 796 ms
18 pos1-0.inr-000-eva.Berkeley.EDU (128.32.0.89) 796 ms 824 ms 796 ms
19 pos5-0-0.inr-001-eva.Berkeley.EDU (128.32.0.66) 796 ms 783 ms 783 ms
20 fast1-0-0.inr-007-eva.Berkeley.EDU (128.32.0.7) 810 ms 810 ms 797 ms
21 f8-0.inr-100-eva.Berkeley.EDU (128.32.235.100) 797 ms 782 ms 769 ms
22 amber.Berkeley.EDU (128.32.25.12) 796 ms 769 ms 810 ms

Traceroute akan menampilkan titik-titik perantara yang menjembatani anda dan titik
tujuan anda, ‘jembatan’ inilah yang biasa disebut dengan router, data yang anda
kirimkan akan meloncat melewati jembatan-jembatan ini. Ada tiga buah waktu yang
menunjukkan berapa waktu yang dibutuhkan oleh paket tersebut untuk berjalan dari
komputer anda ke router.Untuk dapat memahami seluruh data yang dihasilkan oleh
traceroute tersebut, kita harus memahami bagaimana cara traceroute bekerja.
Traceroute menggunakan prinsip TTL dan paket ICMP yang sudah kita singgung diatas.

Traceroute mengirimkan sebuah paket ke port UDP yang tidak dipakai oleh servis
lain pada komputer tujuan (defaultnya adalah port 33434). Untuk tiga paket pertama,
traceroute mengirimkan paket yang memiliki TTL satu, maka sesampainya paket tersebut
pada router pertama (menghasilkan loncatan yang pertama) TTL akan dikurangi dengan
satu sehingga menjadi 0 kemudian paket tersebut akan di drop. Berikutnya router
tersebut akan mengirimkan paket ICMP ke komputer kita yang berisi pemberitahuan bahwa
TTL dari paket yang kita kirimkan sudah habis dan paket yang kita kirimkan di drop.
Dari pesan ini, traceroute dapat menentukan nama router tempat data kita meloncat dan
berapa waktu yang dibutuhkannya. Berikutnya traceroute akan mengirimkan paket dengan
nilai TTL yang ditambah satu demi satu sampai host tujuan dicapai. Karena itu
traceroute menggunakan port yang tidak dipakai oleh servis lain sehingga paket
yang dikirim mendapat respon dan tidak ‘dimakan’ oleh servis lain yang mungkin ada.

Berikut ini adalah contoh yang lebih kompleks dengan melakukan traceroute ke finland:

% traceroute http://www.hut.fi
traceroute to info-e.hut.fi (130.233.224.28), 30 hops max, 40-byte packets
1 203.130.216.2 (203.130.216.2) 137 ms 124 ms 137 ms
2 203.130.216.1 (203.130.216.1) 137 ms 124 ms 124 ms
3 192.168.8.49 (192.168.8.49) 137 ms 151 ms 151 ms
4 S12-0-11.kbl.surabaya.telkom.net.id (202.134.3.45) 192 ms 151 ms 151 ms
5 FE0-0-gw3.cibinong.telkom.net.id (202.134.3.134) 164 ms 165 ms 151 ms
6 hssi-gw3.hk.telkom.net.id (202.134.3.1) 673 ms 645 ms 645 ms
7 202.130.129.61 (202.130.129.61) 659 ms 646 ms 659 ms
8 321.ATM5-0-0.XR1.HKG2.ALTER.NET (210.80.3.1) 659 ms 645 ms 659 ms
9 POS1-0-0.TR1.HKG2.Alter.Net (210.80.48.21) 659 ms 632 ms 659 ms
10 284.ATM6-0.IR1.SAC2.Alter.Net (210.80.50.1) 797 ms 823 ms 797 ms
11 POS2-0.IR1.SAC1.ALTER.NET (137.39.31.190) 796 ms 1566 ms 810 ms
12 122.at-6-1-0.TR1.LAX9.ALTER.NET (152.63.10.218) 838 ms 823 ms 824 ms
13 297.at-2-0-0.XR1.SAC1.ALTER.NET (152.63.50.133) 933 ms 824 ms 838 ms
14 185.ATM5-0.BR4.SAC1.ALTER.NET (152.63.52.201) 810 ms 824 ms 851 ms
15 137.39.52.86 (137.39.52.86) 810 ms 1071 ms 810 ms
16 sl-bb21-ana-15-0.sprintlink.net (144.232.1.173) 769 ms (ttl=246!) 796 ms (ttl=246!) 783 ms (ttl=246!)
17 sl-bb20-pen-8-0.sprintlink.net (144.232.18.45) 893 ms 851 ms (ttl=245!) 893 ms
18 sl-bb22-pen-11-0.sprintlink.net (144.232.18.78) 893 ms (ttl=244!) 879 ms (ttl=244!) 879 ms (ttl=244!)
19 sl-bb10-nyc-9-0.sprintlink.net (144.232.7.1) 865 ms 879 ms 879 ms
20 sl-bb10-nyc-10-0.sprintlink.net (144.232.13.158) 879 ms 892 ms 893 ms
21 gblon505-tc-p6-3.ebone.net (195.158.229.46) 865 ms 879 ms 920 ms
22 bebru204-tc-p5-0.ebone.net (195.158.232.42) 961 ms 948 ms 934 ms
23 nlams303-tc-p1-0.ebone.net (195.158.225.86) 962 ms 961 ms 934 ms
24 dedus205-tc-p8-0.ebone.net (213.174.70.133) 934 ms 961 ms 947 ms
25 dkcop204-tb-p3-0.ebone.net (213.174.71.50) 975 ms 975 ms *
26 * * *
27 ne-gw.nordu.net (195.158.226.86) 1002 ms 962 ms 1016 ms
28 hutnet-gw.csc.fi (128.214.248.65) 1027 ms (ttl=238!) 1040 ms (ttl=238!) 1026 ms (ttl=238!)
29 hutnet-gw.hut.fi (193.166.43.253) 1020 ms 1037 ms 1023 ms
30 info-e.hut.fi (130.233.224.28) 1091 ms (ttl=46!) 1027 ms (ttl=46!) 1067 ms (ttl=46!)

Baris pertama hanya menunjukkan apa yang akan dilakukan oleh traceroute yaitu melakukan
trace ke host yang bernama info-e.hut.fi dengan maksimum loncatan 30 dan besar paket
yang dikirimkan adalah 40 byte.

Hasilnya, paket tersebut melewati 30 router atau 30 kali loncatan. Loncatan yang pertama
sampai kelima hanya memakan waktu sekitar 100-200 mili detik adalah loncatan dari
komputer penulis ke jaringan milik Telkomnet di Indonesia. Pada loncatan ke enam,
waktu yang diperlukan meningkat banyak sekali menjadi sekitar 650 mili detik,
ini dikarenakan loncatan tersebut memang jauh, yaitu dari stasiun bumi Telkomnet
yang ada di Cibinong ke gateway milik Telkomnet yang ada di Hongkong.

Kadang waktu yang diperlukan meningkat banyak sekali karena jarak yang jauh atau
jaringan yang dilewati memang sedang padat. Anda harus mencurigai titik-titik dimana
waktu yang diperlukan menjadi besar sekali. Jika hal ini terjadi, anda dapat
mengeceknya dengan melakukan ping ke router tersebut beberapa kali untuk melihat
apakah paket yang kita kirimkan di drop, atau apakah ada variasi waktu yang besar.

Kemudian pada loncatan ke 16 sampai 18 anda melihat (ttl=246!) di sebelah kolom waktu.
Ini adalah indikasi dari trceroute bahwa TTL yang kembali tidak sesuai dengan sewaktu
dikirimkan ini menunjukkan adanya asymmetric path, yaitu router yang dilewati paket
sewaktu berangkat tidak sesuai dengan router yang dilewati sewaktu paket tersebut
kembali. Tetapi hal itu adalah normal.

Tanda asterik pada loncatan ke 25 dan 26 menandakan bahwa traceroute tidak menerima
respon dari komputer tersebut, pada loncatan ke 26 kemungkinan dikarenakan router
tersebut tidak mengirimkan paket ICMP, sedangkan pada loncatan ke 25 kemungkinan
adalah hasil dari paket ICMP yang dikirimkan oleh router tersebut hilang di perjalanan
karena suatu sebab.
Dikombinasikan dengan ping, traceroute menjadi alat analisa jaringan yang baik dengan
melihat loncatan mana yang memakan waktu yang besar atau paket yang di drop, kita dapat
menentukan dimana titik kritisnya. Kemudian dengan melakukan ping pada titik tersebut
dan satu titik sebelumnya, kita dapat menemukan masalah yang ada dalam jaringan.

Istilah dB, dBm, dBi Pada Radion wireless


Link: http://tokowifi.com/index.php?main_page=page&id=3&chapter=0

Artikel berikut ini disadur dari berbagai sumber dan disederhanakan agar lebih mudah dimengerti bagi para pemain baru ataupun mereka yang tertarik dengan dunia Radio Wireless.

Dari segi matematika, satuan yang digunakan banyak merupakan satuan logaritma. Satuan logaritma ini sangat memudahkan perhitungan. Nah, cara perhitungan nya dapat anda lihat di ilustrasi ataupun contoh-contoh singkat di bawah ini.

dB (Decibel)

Merupakan satuan perbedaan (atau Rasio) antara kekuatan daya pancar signal. Penamaannya juga untuk mengenang Alexander Graham Bell (makanya huruf “B” merupakan huruf besar). Satuan ini digunakan untuk menunjukkan efek dari sebuah perangkat terhadap kekuatan atau daya pancar suatu signal.

Sebagai contoh:

Sebuah kabel memiliki loss (pelemahan atau redaman) 6dB (besar sekali loss nya ya :< ) atau sebuah amplifier memiliki gain (penguatan) 15 dB. Penggunaan satuan ini sangat berguna karena Penguatan (Gain) ataupun Pelemahan (Loss) dapat dihitung hanya dengan penambahan ataupun pengurangan.

dBm (dB milliWatt)

Merupakan satuan kekuatan signal atau daya pancar (Signal Strengh or Power Level). 0 dbm didefinisikan sebagai 1 mW (milliWatt) beban daya pancar, contohnya bisa dari sebuah Antenna ataupun Radio. Daya pancar yang kecil merupakan angka negatif (contoh: -90 dBm).

Sebagai contoh: Umumnya radio dengan standar 802.11b WLAN memiliki kekuatan daya pancar 15 dbm (32 mW). Radio ini juga memiliki spesifikasi lain contohnya seperti -90 dbM RX Sensitivity (yang merupakan daya pancar minimum untuk mendapatkan throughput 54 Mbps)

Formula perhitungan dari mW ke dBM adalah sebagai berikut:

mW = 10dBm/10

milliwatt (mW) adalah satu per seribu watt (W), atau 1000 milliwatts = 1 watt. watt adalah Standar Unit International dari daya (power). 1 watt = 1 joule energi per detik.

10 mW = 10.00 dBm
35 mW = 15.44 dBm
65 mW = 18.13 dBm
100 mW = 20.00 dBm
150 mW = 21.76 dBm
200 mW = 23.01 dBm
300 mW = 24.77 dBm
350 mW = 25.44 dBm
400 mW = 26.02 dBm
500 mW = 26.99 dBm
600 mW = 27.78 dBm

dBi (dB isotropic)

Penguatan dari sebuah antenna terhadap suatu antenna standard imaginari (isotropic antenna). Karena merupakan imaginari, makanya antenna standar ini hanya ada secara teori dan digunakan untuk pengukuran. Penguatan (Gain) dari antenna (diatas 1 Ghz) biasanya menggunakan satuan dBi. Sebuah Antenna Grid 24 dBi memiliki penguatan (Gain) sebesar 24 dBi terhadap antenna standard imaginari 0 dBi (isotropic antenna)

Sebelum membeli antenna dari vendor, tanyakan dulu berapa penguatannya dalam satuan dBi. Satuan ini merupakan satuan standard international. Berarti Antenna Grid 24 dBi walaupun berbeda merek memiliki penguatan yang sama yaitu 24 dBi. Merek tidak berpengaruh bila kedua Antenna memiliki penguatan (Gain) yang sama dan dengan Pola Radiasi (Radiation Pattern) yang sama.

Mengenai Pola Radiasi (Radiation Pattern) akan kita bicarakan dalam artikel lainnya. Pola Radiasi sebuah Antenna juga membantu daya pancar ataupun jangkauan dan juga dapat membantu mengurangi interferensi dalam praktek di lapangan.